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ON THE SUPPERADDITIVITY
OF INFORMATION MATRICES
IN GAUSS-MARKOV MODELS

By

A.S. Hedayat and Dibyen Majumdar

Department of Mathematics, Statistics
and Computer Science

University of Illinois, Chicago

1. INTRODUCTION

Scientists perform experiments to gather information about

some underlying phenomenon. What constitutes information largely

depends on the problem at hand and the mode of inference to be made.

However, one thing is obvious that, no matter what the definition

of informatidn, it should be nondecreasing in the number of obser-

vations. Here, we shall exclude from our consideration cost and

any other nonstatistical/mathematical matter. For example, the

notion "amount of information per $" is of no consideration to us.

With this philosophy scientists working on identical problems

should combine their data for the purpose of analysis and inference.

There are various notions of information which have found

popularity amoung scientists. Before adopting any such notion

one has to establish the minimum requirement that it is nondecreas-

ing in the number of observations. Statisticians dealing with

experiments whose data follow the linear model, by and large, have

adopted the inverse of the variance as the amount of information.

Or more generally, the "smaller" the variance-covariance matrix

the more information has been obtained. Equivalently, the "bigger"

- . . ,- . .z -- . ] 
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2.

the information matrix (the inverse of the variance-covariance

matrix) the more information is provided. Here, we have adopted

the following concept. If A and B are two nonnegative definite

matrices then we say A is at least as large as B (written as

A % B) if A-B is a nonnegative definite matrix. A is bigger

than B (A>B) if A-B is positive definite.

As we noted earlier if D1 and D2 are two sets of data

for the same problem they should be combined for the purpose of

analysis and inference since information, f, provided by D1 U D2

is as large as f1 or f2' the information provided by D1 and

D2  respectively. Thus in general I a i ,i - 1,2. In view of

the above a natural question is this. Are there settings for

which .ze can relate I to 11 + 12" This paper answers this

question in affirmative. We establish that for the classical

linear model there is a supperadditivity for the information

matrix of the combined data, i.e., I a '1 + '2 whether or not

there are nuisance parameters. We prove this in Section 3. In

this section we also give both statistical and geometrical char-

acterizations of cases in which J - 1i + Y2"

In Section 4 we study the status of Gauss-Markov theorem

for the combined data and shall explore its relation to associated

Gauss-MarIov theorems for the individual sets of data. Explicity,

we provide answers to the following questions. (i) Given a

linar paraImetric function p'*1  (02  is the vector of nuisance

parameters) which is estimable under both sets of data, then aderles
L 01



expressed as a linear combination of BWlr of p'S under indi-

vidual sets of data. (ii) The same question as in (i) except

that we insist the same conclusion be true for all estimable

functions. Besides characterization of involved cases we give

explicit forms of the linear functions of BLUEs so that we can

save some computational time in case for each set of data the

BLUEs have already been computed.

In Section 5 we indicate how the results in Sections 3 and 4

could be utilized in the area of optimal design of experiments.

We give examples to illustrate our results throughout the paper.

To develop our theory we need some preliminary results which we

have summarized in Section 1.

2. PRELIMINARY RESULTS.

In this. section we shall introduce the model, some notations

and state some known and not so well known results, which are

needed in the subsequent sections.

We shall be using the classical Oauss-Markov model through-

out this paper. This may be described as follows:

Y - X1 1 + X29 2 +s . (2.1)

Here Y is the vector of observations. X1 is the design matrix

associated with 01 which is a vector of all parameters of

- -. '---------*- .,



4.

interest. X2 is the design matrix associated with 92, which

is a vector of nuisance or covariate parameters. e is the usual

error vector with E(e) = 0, which we assume to be homoscedastic,

i.e., V(e) = aI , where I dentes the identity matrix whose dimen-

sion will be clear from the context.

Throughout we adopt the following notation: For a matrix A,

A(A) will denote the column space of A, r(A) the rank of A

and A- a generalized inverse of A. The matrix PA will denote

the orthogonal projection operator onto A(A). More explicitly,

PA - A(A'A)-A'. Orthogonality for us, is always in terms of the

dot product. If A, B and C are square matrices then the block

diangonal matrix

will be denoted by diag (AB). Disg (A,BC) will have a similar

meaning.

We shall now state and prove four lemmas. Lemua 2.1 and 2.2 I
describe well known results of Gauss-Markov models in a form suit-

able for us. Lemmas 2.3 and 2.4 are purely algebraic in nature.

Lemma 2.1. bY is the BLEW of the linear parametric function

p'O for the Gauss-Narkov model

T I+C Z(S)-o , 0I2, .

L" Z'b p ad b sA(X).
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Proof. b'Y is unbiased for p'S iff X'b = p. Then, by

Lehmann-Scheffe Theorem, b'Y is BLUE of p'S iff

COV(b'Y, z'Y) = 0 for every z for which E(z'Y) = 0 for all S.

i.e., b'z = 0 for every z such that z'X = 0. Note that the

condition of the Lemma on b satisfies the Lehmann-Scheffe con-

dition since if b e ((X) , then obviously b'z = 0, whenever

z'X = 0. Conversely, given b write b = b1 + b2, where

bI  A(X) and b'X = 0. Hence by Lehmann-Scheffe theorem

0 b'b 2 = bb 2 ,

which implies b2 = 0 , i.e., b = b1 e AM.

Lemma 2.2. (i) b'Y is BLUE of the parametric function p'91

for the Gauss-Markov model (2.1) iff

X.b= p ; Xib = 0 and b e A(X

(ii) b'Y is BLUE of E(b'Y) for the model (2.1), iff

b e X[ (I-P.1 2)XI ]

Proof. (i) Unbiasedness of b'Y implies

b'Xl61 + b'Fk0 2 - p'01 , for all 1l'0
foral

! - •
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Hence Xib = p and X b 0 0. The rest of (1) follows from

Lemma 2.1. Observe that X b = 0 iff b = (I-Px 2)b.

But b = XlhI + kh 2  for some hlh 2 , since b e X(X1 :X2 ).
Hence b = (I-Px)b = (I-Px )X h I  [ P)XI]. Conversely if

Heceb= I-X2 2 1 1( X2 )
b'Y = h'Xi(IPX )Y, then Lehmann-Scheffe Theorem can be used

exactly as in Lemma 2.1 to show that b'Y is BLUE of E(b'Y).

Lemma 2.3. Let A and B be two matrices such that

A(A') = A(B'). Then for each p e A(A'), there exists a vector

h and a scalar a (depending on p) such that

A'A h = ap

B'B h = (l-a)p 
(2.2)

are simultaneously satisfied, iff B'B = X A'A for some I u 0.

Proof. First note that A(A') = X(A'A) and A(B') - X(B'B) ,

so p e A(A'A) = (B'B). Also, if (2.2) is satisfied for some h,

for a given non null p, then p'h a p' (A'A)-p - (1-a)p'(B'B)'p.

Solving for a, we obtain

a - ,I)- (2.3)
p'(A'A)-p + p'(B'B)'p

Hence (2.2) implies that a is of the form (2.3). We shall now

prove the 'only if' part of the theorem. It is well known that

7 77



7.

any two nonnegative definite matrices can be simultaneosly diago-

nalized by a single nonsingular matrix (see Rao and Mitra (1971),

p. 122). So, let T be a nonsingular matrix such that

A'A = T' diag(D,O)T , B'B = T' diag(D2 ,O)T (2.4)

for positive definite diagonal matrices D1 and D2  of the

same dimension (say r), since A(A'A) = A(B'B). Equation (2.2)

may be written as

T' diag(D0) T h = ap

T, diag(D2 ,O) T h = (J-a)p (25)

Suppose A'A and B'B are mxm matrices. Partition

T- (Tj : Tj)

where T is mxr and T2 is mxm-r. Let s = Th,

q - (T')- p = Qp , where Q-1 = T'. Corresponding to the partition

of T, partition a' - (s :s2), q' - (qj:q'),Q' = (QI:Qk)" Then

QT' - I implies QIT - I , %T = 0. Since by (2.4)

R(A,) - X(T i ) , p - Tlw for some w. Hence q2 = %p 0 and

q- Q1 p = w. So as p varies over the whole of A(T ). ql

varies over the entire euclidean space Rr. Equation (2.5)

reduces to

SW



8.

D1 s = cq (2.6)

D2 s1 = (1-a) q1

If there exists h,a such that (2.2) is satified for all

p e M(A') , then there exists s1 , a such that (2.6) is satisfied

for all ql e Rr. Given q # 0, it follows from (2.6) that

s= a D 11 ql = (1-a) D2 
1 q

1 (2.7)
i.e., D2DII ql = - (l-a)ql

Note that a-l (1-a) * 0 , since from (2.3) 0 < a < 1.
Write D = diag(djl,...,d r) , j = 1,2. Since (2.7) is satisfied

for all ql e Rr, d2i/dli = a-l(l-a) , for all i =

by choosing q1 = (l,,...,l), a vector of one's. Hence

D2 = a- ( 1-a)D1 , which implies B'B = X A'A, with I = a-l(1-a).

To prove the if part, notice that if B'B - %A'A for some

• 0, then the only admissible value of a, by equation (2.3), is

a- %-l(1 + 1-l - (1 + (2.8)

If h is chosen to satisfy A'A h = ap, then B'Bh = %A'Ah =

I ap - (l-a)p , by equation (2.8). Hence (2.2) is satisfied

whatever p e A(A').

Let A and B be two matrices with the same number of

columns. Then the following is well known (Rao(1965) p. 34):

. . - 4 - . . . . . . . .. .. . .. . . .. . . .. .

| -" : r lj m - .a ..- L.m
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.A(A') n A(B') = (0) . A'A(A'A + B'B)- A'A = A'A.

In the following Lemma the converse is also established.

Lemma 2.4. The following are equivalent.

(i) X(A') n X(B') - (0)

(ii) A'A(A'A + B'B)-A'A = A'A for some g-inverse of

A'A + B'B.

Proof. To prove (ii) -* (i) observe that if (ii) is satisfied for

some g-inverse of A'A + B'B , then it is satisfied for all

g-inverses. Let T be a nonsingular matrix such that

A'A = T' diag(Di,0,O)T, BB = T' diag(D2 ,D3,O)T where DI,D2 ,D3

are diagonal matrices. D1 and D2 are of the same dimension,

D 1 is positive definite. Then A'A + B'B = T' diag(D1 + D2 ,D3,O)T.

Choose the following g-inverse

(A'A + BIB)- = T- 1 diag((D,.D2 )
- 1, Dj O)TI - 1

Then (ii) implies

diag(D1,O,O) dlag( (D 1 +D 2 -lD 3 0) diag(Dl,O,O) diag(D1 ,O,O )

i.e., DI(D+D 2 ) - I D1 - 1

S - ~ -*~~~ -- - - -- ----- - ~----------.------- --
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i.e., D2  0

Hence if T' = (T : T: Tj) in the partitioned form, then

A'A= T DIT1  and B'B - TID 3 T2 .

Thus A(A'A) = A(T1) and A(B'B) a A(T2) . Hence (i) follows.

3. A LOWER BOUND ON INFORMATION MATRICES

The main purpose of this section is to prove that the concept

of information in the context of linear models defined in the

introduction is superadditive, i.e., the information associated

with the combination of two experiments is at least equal to the

sum of the information provided by individual experiments. We

also examine the statistical and geometrical interpretation of

those cases where equality is achieved. Various examples are

provided to elucidate the theory.

Let there be two experiments with the following models:

Experiment 1: Y1 X11 1 + X12O2 + '1' E(Gl) - 0, V(6 1 ) a I

Experiment 2: Y2 "X21O1 + X222 + '2P E(e2) =0 , V(6 2 ) - 1

The meaning of the symbols in each model is the sam as in equa-

tion (2.1). The number of observations in experiment 1 is n1

and in experiment 2 is n2. It is well known that the information

- ---



11.

matrices for estimable functions of 9 for the first and second

experiments are respectively

1 = Xi(In1 - X12(X) 2 XjX 2 )Xll
and

'2 -. V - X0 2)-%)X2.

The term information matrix stems from the fact that the variance

of the BLUE of an estimable function p'S1  is proportional to

p'i1p and p '.9 p for the two experiments. Similarly the linear

model and the information matrix associated with the nI + n2

observations obtained from combining the two experiments may be

written as

Y - (Y1) = (X1 1) + 1 2 + e , E(e) 0 , V(e) = y2 ,

and

= (Xil: l)[In (X 2 )(XiX 2 + %X22)-(Xi2 : Xl1)

where n - nI + n2 .

For simplicity of notations, let us define the following

orthogonal projection operators:

P1i PXI 2 PwPX
3.i~x2 P2X 2 2 P ?)

2I3I



12.

where the notation PA was defined in Section 2. The information

matrices may now be written as

1 Xji(I:n 1-)X11
12 = Xil(ln'P2)XNl

' (Xil : xil)(In-P) X11

We shall drop the subscripts for the identity matrices whenever

they are understood from the context.

It is easy to verify that f a fl and # a f2- Hence infor-

mation is nondecreasing in the number of observations. In the

following theorem we establish much more - information matrices

&are shown to be superadditive.

Theorem 3.1. a 1 1 
+ 1 2  (3.1)

with equality iff

12llc (i2 X1) (3.2)

Proof: .9 - # 9 " (zj1 : 141)(diag(Pl .P2) -(P )

P is the orthogonal projection operator onto X12 while

___" L X22-
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diag(P 1  P2) is the orthogonal projection operator onto

(X2 2 0 Clearly, .

, X12~ ffX12 0

X22)

Thus

(diag(P1 , P2 ))P - P

So, by Theorem 5.1.3 of Rao and Mitra (1971) diag(P, , P2 ) - P

is the orthogonal projection operator onto

{(X12 JC2} 't (X1)).L - 9(s3ay)

Here for any subspace L, L6 will denote the space of vectors

orthogonal to each vector in L.

In particular, diag(P1 , P2) - P is nonnegative definite and

hence -0.2 0O

Equality is achieved iff

which is equivalent to

.. .
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Note that & consists of vectors (zj : zk) Such that

(1 I(112 X20 and (Xj 2 : k2)Q) = 0. i.e., z

za -22, and Xi'X,2 I + W u2- 0 for some U and 2

(3.3) is satisfied iff Xilzl + Xil2 - 0 for all zi ,z2 of the

above form. This Is equivalent to the statement

XhXf2u + XhX2u 2 - 0 whenever Xj2 X 2 'u1 + Xi22 . 0 (3.-1)

(3.) is clearly equivalent to (3.2). Hence the theorem.

Note that (3.2) and (3.4) are equivalent to:

Xj 1Xj 2 al - %X2,a2 whenever Xj 2 X1 2 a - X a 2  (.5)

These equations give geometric interpretation of equality in equa-

tion (3.1). In the next theorem we give a statistical interpretation.

We shall show that every BLUE in the combined experiment is a sum

of some suitably chosen BLUEs of the individual experiments. Each

of these BLUEs may, however, be estimating different parametric

functions.

Let ( (All BLUEs for all estimable functions of *l in

experiment I)j, I - 1,2, and - (All BLUEs for all estimable

functions of 01 in the combined experiment). By Lemma 2.2 (ii),

O" I U (b'Ylb a .£(z-PI)Xilj , I - 1,2 and

- (b'Yjb e AC(I-P)(l Xil : )

_________________________
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Theorem 3.2. 1 1 +  2 iff any bY e can be written as

bY = b{Y1 + b2Y2 with b.Yi e 8' i - 1,2.

Proo: If 1 + 1 2 then from the proof of Theorem 3.1 it

rollows that

(x{1 : XC 1 )(I-P)= (XIl : X)(diag(I-P 1 , I-P 2 )).

Hence h'(Xj I : -= h1Xl(I-P1 )Yl+ htvXj(I-P 2 )y 2 ,

This establishes the necessity. To prove the sufficiency,

suppose WY e and

bY = bIYl + b2Y2 - (b i : b )Y

where b .Y1 6 e'r and bIY 2 e S2 . Applying Lemma 2.2 (i) to the

combined model,

i.e., for some h,h 1

b- " X11 h + X12h, (3.6)

2- 2 1 h + 22 h (
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Premuitiplying (3.6) by (I-Pl) we get

(I-Pl~b (I-PI)X11h

But (I-P1)bl bl, since b 1 £[(I-P1 )X11 ] and I-P1  1is

ideinpotent. Hence

b, (I-P1)X11h .

Similarly b2  (I-P )X2 1 h, from equation (3.7).

So bWY - h'Xj1 (I-P1)Yl + h'X41 (I-P2)Y2 - Since b'Y can be any

element in 69, this Implies that for each s, there exists an h

(a function of a) such that

a'x1 :]Ej)(I-P)Y = h'Xj1 (I-P1)YI + h'xk1l(I-P2 )Y2  (3.8)

Taking expectation on both sides of (3.8), we obtain

s'J - h'Y1 + h1# 2.

Defining 'o0'1 + 2 (3.9)

IsinYoh. (3.-10)

Since (3.10) is true for all, a, I JOB0H for ese matrix R.
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Thus A VJ oCV(0) But ( o ) A(I) from (3.1). Hence we

have,

AC? V) 0 AC) (3.11)

From (3.10) we get,

h - Jos for some o.

Now taking variances in (3.8), it follows that

ofs- h'.lh + h'1 2h = h'1oh - asll;.'o 1oA

0

since J11. afYf -F -I using the fact that I is a

g-Inverse of fo9, the latter being symmetric, and using (3.11).

The above being true for all a, and since both I and YI-1

are symetric, one may write

€0

Note that this relation Is true for an g-InversoS of s0 ime

911J 1n Invarimat uimdr hoice of 1; (see Rao and Mitr, (1971)

Lo .2.4(111.)).
0

i
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Let T be a nonsingular matrix such that I - T' dig(D,O)T

and 10 - T'diag(D ,o)T" D and D have the same dimension

and are both nonsingular due to (3.11). Choose

y0 = T'1 diag(Do 0,O)T' 1 . Using these representations in (3.12)

we obtain D = Do and hence ! = 1o"

In view of Theorem 3.2, the results of Theorem 3.1 can

be given the following interpretation. I = 11 + '2' iff

9 gel 0 92 (3.13)

the algebraic sum of 61 and 92 If -f 101+12, then

(3.13) is violated. This means that elements in 6v - if1 * 92

are BLUEs which cannot be computed from BLUEs of the original

experiment. This is surely due to one or both of the following

conditions:

C.l. (Expectation condition): There exists a p e 1() whichit

cannot be written as p'e1 - p'9 1 + p21  with P1 E £(I1) and

P2 a L0 2 ) . Note thst the column space of an information matrix

provides all estimable functions.

C.2. (Variance condition): There exist a p in the set

{PIP a ,.') and p'l, = Pj.O1 + Pig, , where p, 4 A(91) and

P2 a A- 2 ) for aome p. , P2 }, but for all representations of

such a p, the MM of pl e, In cambined experiment has a smaller

77-
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variance than the sum of the BLUR of pig, in experiment 1 and

the BXE of p201  in experiment 2.

We shall elucidate the above with some examples in block

designs. First we state a corollary which gives a general

characterization of 1 -# + f2 for block designs.

We assume the usual additive model. 9 consists of the

treatment effects and 02 the block effects. Let experiment

1 use blocks B 1 , ... ,BqBq... ,B r  and let experiment 2 use

blocks B , ... ,BrBrl,...,Brs . To keep our discussions

general, we assume that the number of observations in Bi  for

experiment 1 is k.i and that for experiment 2 is k2 i' and

ii need not equal ki when q +I ic i s r. Let Ni ,  = 1,2

denote the incidence matrices for the two experiments, i.e.,

N1 -X.X1, and 'R2  7 2

X,2 and K 2  has r+s columns each. Moreover partition

1= ['m .( : '12 0] and N2- 0 N22 : N23]

where Nl has q columns, N.2 and N22 have r-q columns

each, N2. ha a columns. It is clear that X -X12

diag(ki ,..V.krO,...,0), -1x2  - k

The corollary ua now be stated.

"W,. - !: .F:L.
.

" . . ...
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Corollary 3.1. For a block design s m + Y2 fq+~ +' Y2, -I,
(diag(k zq...,9klr))12 = (dia(k 2q....,kq+l))N22 (.

Proof: From equation (3.2), . = 1 + 2 itff there exists a matrix

T such that

311 - X{2X2T and N2' - 742X22 T

Partitioning T' = [T : : T3], one obtains

Nil " (die4(k '".klq))T1  Nj2 - (dig(klq+l1,...,k 1r))T 2

122-(dilag(k 2q+1g9.... k2 r))T 2 , N23 - (igkr l..k2~)T

Clearly T1  and. T always exists, and T2  exists iff (3.13)

is satisfied.

Thus 1 - l + '2 iff the designs in the common blocks are

"proportional" In the sense of (3.13). In particular, if

kli - k2 i , q + 1 a I a r , then the designs should be isomorphic,

i.e*., Nj2 - Nt2 . If the two experiments have no blocks in common

then obviously f - Y1 + !2 -- a fact which is generally well

known to researchers in the theory of optimal designs.

ZIls3.1. This is a simple though somewhat pathological

example. However, one may easily extend it to more nontrivial

- pb $7 -. a-:.-I- -4
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cases. Consider the following block designs with incidence matrices

the two experiments using the same treatments and blocks. The

combined experiment has the incidence matrix

N = 2 1)

21

Here R(V) - r(11 ) - r(V2 ) --there is only one estimable function.

Moreover I1 I W2 But I : II + !2 ' by Corollary 3.1. This

is because each experiment has an observation confounded with the

second block. These observations are released for estimation of

treatments when the experiments are combined. This is an example

of condition C2.

Example 3.2. Consider the following experiments using the same

treatments and blocks.

0 ( 1 ) o110D

Naming the treatmentffects ri , I g L a , we see that the

estimable fmctions In each experiment are'l - 2 and 3 "

ad their linear combinations only. r2 - becomes estimable
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too upon combining the experiments. Here 1 12 but I •1 + f2

It will be seen in the next section that the BLUEs for 1l 2

and '3- r4 for the combined experiment is a combination of the

BLUEs of the individual experiments. Thus this is an example of

condition Cl. A combination of designs in Example 1 and Example 2

will give an example of both Cl and M2.

In view of Corollary 3.1 it is easy to construct examples

where I - 1 + '2 . Note also that = + #2 when there are

no nuisance parameters, i.e., 02 = 0

4. ON THE ADDITIVITY OF BLUES IN COMBINED EXPRIMTS.

If two sets of data are collected for a fixed linear model

then it is obvious that one should combine the data and carry out

one analysis. In Section 3 we measured the gain in combining

the data in terms of information matrices. In this section we

shall study the status of the Gauss-Markov theorem for the combined

data and explore its relation to the associated Gauss-Markov

theorems for the individual sets of*data. In particular, we shall

-* deal explicitly with the following questions:

Cquestion. 1. Suppose we are given a linear parametric function

pt 1 which is estimable under both sets of data. Under what

cnditions,

BLUE of p'l 1  under the combined data - linear com- (.I)
bination of Es of P'1  under the individual sets

of data?

1* -"I I I - .. ... *> T
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Question. 2. Same as Question 1, except that we insist that

the statement (4.1) is true for all estimable functions. Thus

if * is any linear function of 01 estimable under the both

sets of data, we want

BLUE of * under the combined data = linear com-
bination of BLUEs of * under individual sets of (42)
data.

We shall completely characterize cases under which (4.1)

and (4.2) are valid. These characterizations turn out to be

mathematically interesting and reveal more about the structure of

the information matrices. These results would be of practical

significance since in the cases where (4.1) or (4.2) are valid,

a lot of computational time can be saved if the BLUEs for each

individual sets of data are already available.

Before starting on these problems, we remark that Theorem

3.2 answers a question similar to Question 2. If I = Yl + 12P

h is a solution of

h h- p (43

and Pi - Jih , i =1,2 then from the proof of the necessity of

Theorem 3.2, (ALUE p'f1 in combined data) - (BLUE pe,1 in

experiment 1) + (BLUE p 01  in experiment 2). Note that p1

and p2  are invariant whatever h, satisfying (4.3). However,j P OI and pie1 may not be multiples of p'S 1 .Kie,
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Let us look at Question 1. Suppose b'Yi is the BLUE of

p'i  in experiment i, i - 1,2 . Here p e f(11) n A( 2 ). If

albY I + cb Y2 is the BLUE of p'S1 when the data are combined,

the unbiasedness condition, p' 1q - E(alblY1 + a2bjY2 ) , for all 01,

implies that a, + a2 - 1 . Among all such unbiased estimators

the one with minimum variance has

V(b Y2)
al= (bY) +V (b Y2 ) = a(say) and c- 1-a.

Explicitly,

PSICc - (4.4)
p f.p + p,'1p

So the only linear combination which can be BLUE of p'S 1  under

the combined experiment is

b'Y - bjY + (1-a)bjY2 . (4.5)

The following Theorem answers Question 1.

Theorem 4.1. Let p e Avl) n A (J2) and p it 0 . Then equation

(4.1) is satisfied iff there exists vectors h1 and h2 such that

: hl ap , 12hl - (1-a)p (4.6)A__

n
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X12X1JkL + XiXJ2 h2 =0 - o 2X21h1 + ]2'2A = o (4.7)

Proof: b'Y in (1.5) is obviously unbiased. By Leoua 2.2 (i)

it is BLUE of p'i 1  iff

(1-a)b2 ) X21 X2

i.e., iff there exists hI  and h such that

ab1  X 13. + X1 h2  (4.8)

(1-c')b 2 -X2hl + X2 2 h2  (4.9)

(1.8) can be equivalently written as

cbl. - (I-P1)Xlh. +4. + X(4.1o)

where P1 " 1(-X)X , as in Section 3. Pretiultiplying

(4.10) by Xi2  we get, since Xi2b1 - 0 i

0 mXi 2 Xlh 1 + XlXA. (i.11)

Premltiplying (4.11) by X1(ZX) ,

o m PiZ 1 hl + X.h 2 -'(4_.12)
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This, together with (4.1o) implies

ab1 - (I-P 1 )Xllhl (4..13)

It is easy to see the equivalence of (4.11) and (4.12). There-

fore (4.11) and (4.13) together imply (4.10). Hence (4.10) is

equivalent to ((4.11), (4.13)). Premultiplying (4.13) by

Xii- we have, since Xfibl - p,

ap .jh 1  (4.14)

By Lemma 2.2 (i)

b1 - (I-P1)Xll t

for some t. Thus p Xh(I-PI)XIt. So (4.14) becomes

Gz 1'(I-P1 )X3 t - Xl(1-P1 )X3uh hl

which implies that

M (I-PF)X 1 1 t- (z-P)Xu hi

Thus (4.i) and (4.14) are equivalent. Hence (4.8) is equivalent

to

X1j2 x1 h1 + XLX12 h2 - 0

~,
na m In I I - - - --I I - - i- - n' ' il. . . .
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and 2

Jh 1 - up

Similarly (4.9 ) is equivalent to

12h, - (l-a)p and Xi2XihI + O.2 2 2 h 2  0

Hence the theorem.

Let us move on to Question 2. Here, we want (4.I) to be

valid for all p in A(1 1 ) n AV.) which we assume to be differ-

ent from (0). Let T be a nonsingular matrix such that,

Yl T'diag(Dll,Dl2,0,0)T Tdi2(

i TT - T'diag(D2 1 ,0,D2 2 ,0)T (4.15)

where the Dii's are diagonal matrices. Note that the simultaneous

diagonalization of J1 and '2 are carried out in such a way
1/

that the corresponding component matrices in diag(D11,D120,0)

and diag(D21,O,D ,2 ,0) are of the same dimension. D11 and D21

are nonsingular. If A411 ) c A(Y2) , then there will be no D12

and we shall write the matrices in (4.15) with only three diagonal

blocks. Similar modifications are needed when ( I

1I ('I) - A(1 2 ) , then we need only two diagonal blocks, i.e..

1 - T'diag(DII,0)T '0 2 - T'diag(D21,O)T (4.16)

Considering only the general case when Al) n A(.2) contains

neither (1 ) nor A(12), we may insist that D12 and D2

22J
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are nonsigular. The results for the special cases mentioned

above may be obtained from the general results with obvious

modifications - we shall only consider the case A( 1 ) - (t2)

separately, as this is of special interest.

Partitioning, T' - (T : T : T : ), we get from (41.15),

'1 W '1PDlTl + T1D2T2 ' Y2 - T 2 1 T1 + TP22T3
Defining

3.- TID3 1  12 - T"DT ,21 = TD 2 1 T1 "22 - Tj 2 2 T3

we obtain

-f ' + 112 -' 2 +21 -f22 (4.17)

A1) n #(.' ) - (o) A AU'2 1 ) ntAU 22 ) - (0)

Af(132) n -?"(-#2) -(0) Y-011~) -4(f21) - M1'1) n A(12).

From Theorm 3.1 it follows that

fl J+ 12+ 12 1 + 122R

where R is a nomegative definite matrix.

. BLU4 of p' 0 in the combined experiment

L
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- a(mWK of p'9 1 in experiment 1)

+ (1-a)(Wr of poe 1  in experiment 2) (4.19)

for all p eA( nA 2) iff

Y21 - 1 for some P • 0 (4.20)

and

(4.21)3-19z + -f 2 + Ro (.z

with

R Y 12 + Y22 + R satisfying

AC?(.,) n A(Ro ) = (0) (4.22)

Proof Suppose (4.19) i given. Then (4.6) Is satisfied for

each p a (13) - AC 2 ). The equation

can be written equivalently as

J1 1hl P Y.2h'

usIm the taats that P a A(Yl) and A($1) nM A 2) ( o).

im- - I II I , , ,_ = t; ' 
1
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so, equation (41.6) implies

Ill h -'MP and 12111 b (1-) P

and this Is true for all p e £U~. Lema 2.3 now gives

I21n~1 for som Xb0

which is (41.20). Observe that,

a--- (11.23)
P'1p4p' 2P Ply 21'bP '+I-

since by Lemas2.41, p 11 -p p'I jp 0im=,2 . Thus a iu Inde-

pendent of p.

Taking var'iances an both sides of equation (11.19). one

obtains, for each P a(VJ1).

a- ll +

-(3,+%)mlpUjp , usi~ng (41.23)

Where 11. + -2 (i81= 1. Sic this ia true for anl

p.L (Y0 ) ,we got
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y2 V(BLUE of p".1 in combined experiment)

- pt~op

using the "(i) -* (ii)" part of Lemma 2.4, and (4.22). This

being the same as (4.24), we appeal to the uniqueness of the

BLUE in the classical Gauss-Markov model to conclude that the

estimator b'Y is the BLUE in the combined model. Hence we

get equation (4.19).

Remark 4.1. Under conditions of the Theorem,

10 - + %o

using Lemma 2.4 and equation (4.22), we get plP'p - p'op ,

for each peA Q o) and p''p -p'RP , for each p c L(R o )

In this sense J. and R. are themselves information matrices.

Thu (4.21) gives a decomposition of f into two information

matrices whose spaces are disjoint. In a sense the combined

experiment can be looked upon as the union of two disjoint

(fictitious) ezpearments, one consisting of the comon part of

the Individual experiaents (corresponds to and the other

omstting of the remainder of the Indlil.dual experiments

(WWorresponds to 132and 122) and the portion which is purely

the profit from combining (corresponding to R). Also note that

(4.21) iplies

.. ~~~~~~.................. ..... ', -i : -". ... . ...
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YVl)n A(R) -(0)

Remark 4.2. Since - + 0 and '' 1  0

!1 and !2.are themselves information matrices, by Lemma 2.4.

Y3,is the Information matrix of parametric functions common to

both experiments and 12that of function which can be estimated

from experiment 1 'only. A similar explanation holds for !2l

and Y2 Thus when the conditions of the Theorem are valid,

estimable functions in A(~ 1 ) n YAC'2) are estimated by a linear

combination of the BLUY's. Estimable function from are

rionestimable in experiment 2, but thir BLUEs may use observations

from experiment 2 when the experiments are combined. This is

because A(j)n A(R) need not be (0). A similar observation

holds for functions from'u !2

As an example, consider the following block designs, given

by their incidence matrices

Nj 01, 1 0 0 001 1 1 0 100

The combined experiment has the incidence matrix

II0 02)

Straightforward oomPutatiaohm u~tat -1 21 dift(0,0,A)v

where A -1 , D.nd



Clearly the conditions of the theorem are satisfied. Hence the

BLUE of 5- '6 is a linear combination of the BLUEs in the

original experiments. - T4can be estimated from experiment|
2 only. i- -2 is estimable in experiment 1 only, but its BLUE I
in the combined experiment uses observations from experiment 2

also. This is due to the tact that the observation~s in block 2

in each individual experiment cannot be used due to confounding,

but are released when they are combined. '2 - v3 can be estimatedI

only in the combined experiment. We give this somewhat oversimple-

fled example to illustrate Theorem i.2 in a way that can be seen

obviously without getting involved into complicated structures of

the matrices associated with problem.
In the following theorem, the conditions of Theorem #.2 are

expressed in a form which is better suited for computational eri-

fication. We give a general form which must be simplified in partic-

ular setti1gs in which an experimet is inteobted.

Theorem i.. Equation (.9) is satisfied for all p in

in eacn ep(im) ico

I21 t e, for some o 0. (.20)

and

AI11) n :2 " " i
414111--1- C
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where T - Q (Qj : : : Q4) , T being defined in (4.15),

and the partitions corresponding to those of T'.

Proof: As noted in the proof of Theorem 4.2, (4.6) is equivalent to

63hl = ap , ! 2 .h - (1-cz)p (4.26)

and

12hl - 0 1 22hl = 0 (4.27)

since p e A(Jl) . Equation (4.26) can be replaced by

121-%11l for some ) 3 0, 1 1 1h1 -ap (.28)

So (4.19) is equivalent to the following statement:

For each p e A(,,), there exists h , such
that (14.27), (4.28) and (4.7) are satisfied. (4.29)

Note that (4.28) must iply that a = (l+x) " . Let

Th1 - a*, (T')'1 ,p eq and partition a' - (si : sj : sj s4)

a q'= (q i cli qj : q4). A I theproof of Lema2.3,

q2 q3 and q4 a are.. null vectors since p a AV.1).

Overv that

11b up *n,,, 1q, 8 d~j',ql~
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The first equivalence follows since Q1Ti= I, TQJT' -T

and hence T Qlp - p , since p e A(T{) . Similarly

12hl - 0 .D 1 2 S2 - 0 a s2 = 0

22hl - 0 P2253 - 0 0 s3 m 0

Also, Xi2 X1Jh + Xi2X2h2 - 0

a -X 2 Xl2h 2 - X x_1T -1- xs 2xlQ51, + XVx11Q48s

a %Xj Qsi - xiX - Xj XQ158 (4.3o)

And similarly x 2X2 1h1 + % - 0

Xl1 kaio~1l - -i A - '4AX215484(~3

So, (4.29) is equivalent to

]or each p * 1J.), there ez sts h2  and a 4

suchthat 4f21- 11,fo1 .P0, and

(4.30) and (4-31) are satisfied. (4i.3e)

p varies over A i11) iff q, Is any arbitrary vector, which

Is true 1ff s (l%)-jlqI Is amy arbitrary vector.
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s 2  and s 3  must be 0 as we have already noted. So, (4.32) is

equivalent to

J 2 1 w )f91 1  for some 1 P 0, and there exists

matrices H and S such that

X12 1 1Q1 = Xij2 XliH + Xi2XllQ4S

" 2X2kq i = x42 X2 2H + 4 2 X2 1 Q4S• (4.33)

Clearly (4.33) is equivalent to (4.20) and (4.25).

A case of special interest is when both the experiments are

designed to have the same estimable functions of 01 i.e.,

In this case 12 -n22 0 , =1 1 1  2  f J 2 1 Ro R.

Theorems 4.2 and 4.3 can be restated with some simplifications

when (4.34) is satisfied. We do these in Corollaries 4.1 and 4.2.

Corollary 4.1. If -r(f1) - -(9 2 ) . then for each p e

BMME of p'S1  in the combined experiment is a linear combination

of the BEs of p'9 1  in the individual experiments iff

f2 " O1 for some X P 0

and

S-..+, 2 +R with Af1) nA(R) -(0.

i i I- - I + 12.
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Corollary 4.2. I(.(Y) = A(!2) then equation (4.19) is

satisfied for all p e A(J1) iff

2 1 lfor some X P 0

and

X'~ ~ P i .f X2 12 X ' X j jA~ (2X22 X2 2X21U2)

where U' = (U : U2) is the inverse of T, which is any non-

singular matrix diagonalizing !l i.e.,

9f T' diag(Do)T,

and T' = (T1 : T2) Both T and U' have as many columns

As illustrations consider the examples in Section 3. In

Example 3.1, 1 =2 but the conditions of Corollary 4.2 are

violated. Hence the BLUE of -r1 T2 is not a linear combination

of BLUEs of the individual experiment. Clearly, the observations

in Block 2 in the individual experiments can only be used when

the data are combined.

In Example 3.2, Y 1 -12 and the conditions of Corollary

4.2 are satisfied. The MUls or r-,r2 and r 3- are obtained

linear combinatios from the Individual experiments.

Howover T2- Is estlmable only when the data are combined.

m u m IIi
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Thus to obtain its BLUE the entire data has to be put together

and analysed. This leads us to the next question. Under what

conditions is (4.1) satisfied for all p e R(1) , if

A() - (1) - A( 2 ). The following corollary answers this

as a special case of Corollary 4.1.

Corollary 4.3. 1f -() - A(), then for each

p e () , the BLUE of p'9 1  in the combined experiment is a

linear combinaticn of the BLUEs of p' 01 in the individual

experiments iff

12 = [1 for acme I lb 0

and

Proof: Follows from Corollary 4.1 since if 1 - +2 + R,

and -,(2) - then 12 - Xyl and

V11l) n MR) - o) iff f 1 and R -O.

For the sake of completeness, we state the version of

Corollary 4.2 when A A) - -V 2)s, in Corollary ..

The proof follows directly from Theorem 3.1.

Coronelry 4.4. If A() - A( 1 ) - (-f), then equatio (4.19)

is satisfied for all p ,A(f) iff

i 4.~~ ________
- .r -- -
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for some OP 0

and

Xi2X I) \i2 X2)

Examples where these results are valid may be easily obtained

by considering two block designs with the same incidence matrix,

and having isomorphic designs in their common blocks.

Finally, we remark that in many cases superadditivity of

information matrices is due to the fact that some observations

may not be used in the EWVEs based on individual experiments due

to confounding, but may be released and utilized for estimating

linear functions of *l when the data from the experiments are

combined. This is clear from the examples considered in this

and the previous section.

5. CONCLUDING R24ARKS.

In this report we have established the superadditivity of

Information matrices and explored conditions for additivity. We

have also found conditions when KUEs for the combued experiment

can be computed simply from the BLUEs of the Individual experiments.

The conditions provide geometrical and statistical insight into

problems associated with combining experiments. The results are

for a general linear model. In any particular setting they may

have to be translated to a more readily verifiable form. As an
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example, we may refer to Corollary 3.1 where the conditions for

the equality I = f1 + 12  have been expressed in a very elemen-

tary form for the block design setup.

We hope that the results in this report may be profitably

utilized in further research. As an illustration we can consider

a problem of extending an experiment optimally. Suppose an

experimenter has conducted an experiement for comparing treatments

in b block ... ,*Bb of size k each. Then suppose he is

given funds to conduct another experiment of the same nature to

improve on his findings. Suppose he has the choice of either

using new blocks Bb 1l''"" '3 b' or using the old blocks again.

Suppose the experiment is such that the old blocks have no

residual effect from the earlier experiment, i.e., the model

remains the same. The question is, how should the experimenter

extend the experiment to get the beat results? What should be

his new design?

Let '1 be the information matrix of the old design, 12

the Information matrix of the extension and I the Information

matrix of the combined experiment. If the experimenter uses

new blocks, then urely - l + 12 In fact, if he uses

some or all of the old blocks, then also $ - + '2 as long

as the designs in the common blocks are isomorphic. Thus, he

should use the same blocks and try not to have the new design

isomorphic to the old one. Obviously, if the old design can

be extended to an optimal design In b blocks of size 2k each

- --.
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(for example, a Balanced Block Design), then the information in

the combined experiment has been "tmaximized"~. Otherwise, one

suspects that in general the extension should be as far as possible

from designs which are isomorphic to the old design.

Now 'suppose the experimenter has only two choices: to repeat

the same experiment (same design) in new blocks or in the old

blocks. Clearly the information matrix is the same in both cases,

viz 1 'where ! 1 and 12have their usual meanings.

But if he uses old blocks he saves a lot of degrees of freedom

which would be otherwise used for the new block effects. He can

use them to test the validity of his model. Alternately, he can

use this to get a better estimate of a thle measurement error.

In this case, though he is estimating the estimable treatment

parameters with the same precision as he would have if he uses

new blocks, his estimate of the variance of estimate improves

considerably. We may remark that unfortunately the precision of

estimators of a2 as has been suggested by Fisher (1971) has

been largely ignored in the literature of optimal design of

experiments.
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